Structural Dynamics

Structural Dynamics Basic Knowledge.

mdof provides fast and friendly system identification for structures.

Book ToDo:

  • [ ] Dynamics of Structures by Anil K. Chopra
  • [ ] Mechanical Vibrations Theory and Application to Structural Dynamics (Michel Geradin, Daniel J. Rixen) 🤓
  • [ ] 机械振动 张义民

Nice Video

Blog:

「结构动力学入门」引入 - 知乎

实际工程中,力是变化的$P(t)$,且要考虑惯性,因此在动力平衡方程中要添加惯性力:
惯性力:$\boldsymbol{F}\left(t\right)=-\boldsymbol{Ma}\left(t\right)=-\boldsymbol{M \ddot{u}}\left(t\right)$
动力平衡方程:$\boldsymbol{M\ddot{u}}\left(t\right)+\boldsymbol{Ku}\left(t\right)=\boldsymbol{P}\left(t\right)$

一维质量弹簧系统阻尼简谐运动 - 知乎

无外力: $P(t)=0$

  • $u(t)=A\cos(\omega_0t+\varphi)$
    • $\omega_{0}=\sqrt{ \frac{k}{m} }$ 系统的固有频率只与刚度质量有关
    • $\varphi=\arctan(-\frac{\dot{x}_0}{\omega_0x_0})-\omega_0t_0$
    • $A=\sqrt{x_0^2+\frac{\dot{x}_0^2}{\omega_0^2}}$

有外力:$P(t)=F_{0}\sin(\omega_{f}t)$ $\omega_{f}$是外加力的频率

  • $u(t)=Ae^{-\xi\omega t}\sin(\omega_0 t+\phi) + \frac{F_0/k \sin(w_ft-\theta)}{\sqrt{ (1-r^{2})^{2}+(2r \xi)^{2} }}$

非线性动力学 nonlinear dynamics-CSDN博客

线性弹簧:$kx$
非线性弹簧:$kx+hx^{3}$

Welcome to my other publishing channels