Structural Dynamics Basic Knowledge.
mdof provides fast and friendly system identification for structures.
Book ToDo:
- [ ] Dynamics of Structures by Anil K. Chopra
- [ ] Mechanical Vibrations Theory and Application to Structural Dynamics (Michel Geradin, Daniel J. Rixen) 🤓
- [ ] 机械振动 张义民
Nice Video
- [x] Understanding Vibration and Resonance - YouTube 三自由度弹簧系统中每个质量块都有自己的位移$x_{1}(t),x_{2}(t),x_{3}(t)$,因此该系统会有三个固有频率和模态振型
- [ ] 《非线性动力学与混沌》——康奈尔大学 中英字幕_哔哩哔哩_bilibili
Blog:
实际工程中,力是变化的$P(t)$,且要考虑惯性,因此在动力平衡方程中要添加惯性力:
惯性力:$\boldsymbol{F}\left(t\right)=-\boldsymbol{Ma}\left(t\right)=-\boldsymbol{M \ddot{u}}\left(t\right)$
动力平衡方程:$\boldsymbol{M\ddot{u}}\left(t\right)+\boldsymbol{Ku}\left(t\right)=\boldsymbol{P}\left(t\right)$
无外力: $P(t)=0$
- $u(t)=A\cos(\omega_0t+\varphi)$
- $\omega_{0}=\sqrt{ \frac{k}{m} }$ 系统的固有频率只与刚度质量有关
- $\varphi=\arctan(-\frac{\dot{x}_0}{\omega_0x_0})-\omega_0t_0$
- $A=\sqrt{x_0^2+\frac{\dot{x}_0^2}{\omega_0^2}}$
有外力:$P(t)=F_{0}\sin(\omega_{f}t)$ $\omega_{f}$是外加力的频率
- $u(t)=Ae^{-\xi\omega t}\sin(\omega_0 t+\phi) + \frac{F_0/k \sin(w_ft-\theta)}{\sqrt{ (1-r^{2})^{2}+(2r \xi)^{2} }}$
线性弹簧:$kx$
非线性弹簧:$kx+hx^{3}$