Title Flexible Isosurface Extraction for Gradient-Based Mesh Optimization
Author Shen, Tianchang and Munkberg, Jacob and Hasselgren, Jon and Yin, Kangxue and Wang, Zian and Chen, Wenzheng and Gojcic, Zan and Fidler, Sanja and Sharp, Nicholas and Gao, Jun
Conf/Jour ACM Trans. on Graph. (SIGGRAPH 2023)
Year 2023
Project Flexible Isosurface Extraction for Gradient-Based Mesh Optimization (FlexiCubes) (nvidia.com)
Paper Flexible Isosurface Extraction for Gradient-Based Mesh Optimization (nv-tlabs.github.io)

一种新的Marching Cube的方法
image.png

Read more »

Title BakedSDF: Meshing Neural SDFs for Real-Time View Synthesis
Author Lior Yariv and Peter Hedman and Christian Reiser and Dor Verbin and Pratul P. Srinivasan and Richard Szeliski and Jonathan T. Barron and Ben Mildenhall
Conf/Jour SIGGRAPH
Year 2023
Project BakedSDF
Paper BakedSDF: Meshing Neural SDFs for Real-Time View Synthesis (readpaper.com)

image.png

  • 对前景物体采用类似VolSDF的方法训练Modeling density with an SDF
  • 使用Marching Cube 的方法来提取高分辨率网格Baking a high-resolution mesh
  • Modeling view-dependent appearance,对baked后的高分辨率网格上顶点:采用漫反射颜色和球形高斯叶(前景3个波瓣,远处背景使用1个波瓣)
    • $\mathbf{C}=\mathbf{c}_{d}+\sum_{i=1}^{N}\mathbf{c}_{i}\exp\left(\lambda_{i}\left(\mu_{i}\cdot\mathbf{d}-1\right)\right).$
Read more »

Title Ref-NeuS: Ambiguity-Reduced Neural Implicit Surface Learning for Multi-View Reconstruction with Reflection
Author Wenhang Ge1 Tao Hu 2 Haoyu Zhao 1 Shu Liu 3 Ying-Cong Chen1,∗
Conf/Jour ICCV Oral
Year 2023
Project Ref-NeuS (g3956.github.io)
Paper Ref-NeuS: Ambiguity-Reduced Neural Implicit Surface Learning for Multi-View Reconstruction with Reflection (readpaper.com)
  • Anomaly Detection for Reflection Score + Visibility Identification for Reflection Score
  • Reflection Direction Dependent Radiance反射感知的光度损失
Read more »

Title Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance
Author Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan Atzmon, Ronen Basri, Yaron Lipman
Conf/Jour NeurIPS
Year 2020
Project Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance (lioryariv.github.io)
Paper Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance (readpaper.com)

image.png

端到端的IDR:可以从masked的2D图像中学习3D几何、外观,允许粗略的相机估计

Read more »

推到了SDF-based Volume Rendering 渲染的颜色监督会造成表面颜色和几何的偏差。(对渲染贡献权重最大的颜色值的位置并不是物体的表面) Bias in color rendering
几何先验:使用COLMAP产生的稀疏点来作为SDF的显示监督—>可以捕获强纹理的复杂几何细节
具有多视图立体约束的隐式曲面上的几何一致监督—>大面积的光滑区域

image.png

Read more »

Title HF-NeuS: Improved Surface Reconstruction Using High-Frequency Details
Author _Yiqun Wang, Ivan Skorokhodov, Peter Wonka_
Conf/Jour NeurIPS
Year 2022
Project yiqun-wang/HFS: HF-NeuS: Improved Surface Reconstruction Using High-Frequency Details (NeurIPS 2022) (github.com)
Paper Improved surface reconstruction using high-frequency details (readpaper.com)

贡献:

  • 新的SDF与透明度$\alpha$关系函数,相较于NeuS更简单
  • 将SDF分解为两个独立隐函数的组合:基和位移。并利用自适应尺度约束对隐函数分布不理想的区域进行重点优化,可以重构出比以往工作更精细的曲面
Read more »

Title Color-NeuS: Reconstructing Neural Implicit Surfaces with Color
Author Licheng Zhong1 , Lixin Yang1,2 , Kailin Li1, Haoyu Zhen1, Mei Han3, Cewu Lu1,2
Conf/Jour arXiv
Year 2023
Project Color-NeuS (colmar-zlicheng.github.io)
Paper Color-NeuS: Reconstructing Neural Implicit Surfaces with Color (readpaper.com)

集成了与视图无关的全局颜色变量和与视图相关的relight效果
image.png

Read more »

image.png

贡献:

  • BRDF+SDF+PBR新框架,端到端训练,重建出Face的外观和几何
  • 简单而新的低秩先验,镜面反射部分的Material Integral. 表示为线性组合的BRDF基
Read more »

Title FreeNeRF: Improving Few-shot Neural Rendering with Free Frequency Regularization
Author Jiawei Yang Marco Pavone Yue Wang
Conf/Jour CVPR
Year 2023
Project FreeNeRF: Frequency-regularized NeRF (jiawei-yang.github.io)
Paper FreeNeRF: Improving Few-shot Neural Rendering with Free Frequency Regularization (readpaper.com)

Frequency regularized NeRF (FreeNeRF)
image.png
T为正则化持续时间,t为当前训练迭代,L为输入位置编码的长度

How:

  • High-frequency inputs cause the catastrophic failure in few-shot neural rendering.
    • 位置编码中高频信号可以使高频分量更快收敛,但是过快收敛将导致少样本神经渲染中灾难性的过拟合
    • 测试:将高频位置编码位设置为0,pos_enc[int(L * x%): ] = 0, , L为位置编码的长度,x是可见比率
  • Frequency regularization enjoys the benefits of both high-frequency and low-frequency signals.
    • 频率正则化:根据训练时间steps,线性增加的频率mask,来正则化可见频谱。即刚开始使用低频,逐步增加高频信号的可见性
    • 频率正则化有助于降低在开始时导致灾难性故障的过度拟合风险,并避免在最终导致过度平滑的欠拟合
  • Occlusion regularization addresses the near-camera floaters.
    • 遮挡正则化,对相机附近密集场进行乘法
Read more »

Title Floaters No More: Radiance Field Gradient Scaling for Improved Near-Camera Training
Author Julien Philip1, Valentin Deschaintre1
Conf/Jour The Eurographics Association
Year 2023
Project Floaters No More: Radiance Field Gradient Scaling for Improved Near-Camera Training (gradient-scaling.github.io)
Paper Floaters No More: Radiance Field Gradient Scaling for Improved Near-Camera Training (readpaper.com)

image.png

消除由近平面过度采样导致的摄像头附近漂浮物
可以通过几行代码简单的用于:

  • Mip-NeRF 360
  • InstantNGP
  • DVGO
  • TensoRF
Read more »

image.png

在Neus基础上添加了:

  • 哈希编码加速
    • 定制的二阶导数反向传播计算
    • 渐进式学习策略(渐进添加高leve的哈希表)
  • 动态场景重建
    • 全局变换预测
    • 增量训练策略

主要代码通过cuda c++编写

Read more »

Title NeUDF: Leaning Neural Unsigned Distance Fields with Volume Rendering
Author Yu-Tao Liu1,2 Li Wang1,2 Jie Yang1,2 Weikai Chen3 Xiaoxu Meng3 Bo Yang3 Lin Gao1,2*
Conf/Jour CVPR
Year 2023
Project NeUDF (CVPR 2023) (geometrylearning.com)
Paper NeUDF: Leaning Neural Unsigned Distance Fields with Volume Rendering (readpaper.com)

image.png

解决了Neus中SDF的一个限制:仅限于封闭表面的重建,无法重建包含开放表面结构的广泛的现实世界对象
NeUDF使用UDF:仅从多视图监督中重建具有任意拓扑的表面

  • 提出了两个专门为基于UDF的体渲染量身定制的权重函数的新公式
    • $w_r(t)=\tau_r(t)e^{-\int_0^t\tau_r(u)du}$ Eq.4
    • $\tau_r(t)=\left|\frac{\frac{\partial(\varsigma_r\circ\Psi\circ p)}{\partial t}(t)}{\varsigma_r\circ\Psi\circ p(t)}\right|$ Eq.5
      • $\varsigma_{r}(d) = \frac x{1+x}$
      • UDF: $d=\Psi_{\mathcal{O}}(x)$
  • 为了应对开放表面渲染,当输入/输出测试不再有效时,我们提出了一种专用的法向正则化策略来解决表面方向模糊问题
    • 用邻近的插值法向替换原始采样的表面法向

局限:

  • 无法重建透明表面
  • 平滑度和高频细节无法同时拥有
  • 需要额外的网格划分工具,导致重构误差
  • 展望:透明表面、稀疏视图
Read more »

Title Point-NeRF: Point-based Neural Radiance Fields
Author Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin ShuKalyan Sunkavalli , Ulrich Neumann
Conf/Jour CVPR 2022 Oral
Year 2022
Project Point-NeRF: Point-based Neural Radiance Fields (xharlie.github.io)
Paper Point-NeRF: Point-based Neural Radiance Fields (readpaper.com)

image.png

  • 生成初始点云(本文),此外还有Colmap和Metashape等方法生成
    • 基于MVS Net的$G_{p,γ}$,生成每个点的位置和置信度(点是否在表面上)
    • 基于2D CNN的$G_f$,生成每个点的特征
  • 点云处理:排除降低渲染质量的孔和异常值 每10K次迭代
    • Point pruning 对置信度低于0.1的点进行删除
    • Point growing 当ray marching中密度最大点(表面附近的点)周围的点比较少时,添加点来填补空白
  • MLP获取点x的信息
    • MLP F:x点周围点的新特征$f_{i,x}=F(f_{i},x-p_{i}).$
    • MLP R:x点的辐射值(or颜色) $r=R(f_{x},d).$
      • x点的聚合特征$f_{x}=\sum_{i}\gamma_{i}\frac{w_{i}}{\sum w_{i}}f_{i,x},\mathrm{~where~}w_{i}=\frac{1}{|p_{i}-x|}.$
    • MLP T:x点周围点的密度 $\sigma_i=T(f_{i,x})$
      • x点的聚合密度$\sigma=\sum_{i}\sigma_{i}\gamma_{i}\frac{w_{i}}{\sum w_{i}},w_{i}=\frac{1}{|p_{i}-x|}.$
Read more »

colmap tutorial

更好的重建效果需要拍摄的图片保证:

  • 好的纹理
  • 相似的照明条件,避免高动态范围场景(例如,逆光阴影或透过门窗的照片),避免在光滑表面上出现反射光
  • 高视觉重叠度,确保每个对象至少在 3 张图像中可见,图像越多越好
  • 从不同的视角拍摄图像,不要只通过旋转相机来拍摄相同位置的图像
Read more »

Title Neural Radiance Fields in the Industrial and Robotics Domain: Applications, Research Opportunities and Use Cases
Author Eugen ˇSlapak, Enric Pardo, Mat ́uˇs Dopiriak, Taras Maksymyuk and Juraj Gazda
Conf/Jour cs.RO
Year 2023
Project Maftej/iisnerf (github.com)
Paper Neural radiance fields in the industrial and robotics domain: applications, research opportunities and use cases (readpaper.com)

探索了NeRF在工业和机器人领域的应用

  • Instant-NGP 基于NeRF的视频压缩技术
  • D-NeRF 根据过去的arm位置来预测未来的arm运动
Read more »

Audio Visualization(一般用来显示音乐的频谱信息,可以直观地看出乐器/人声的频率)

Read more »

image.png

  • 将点描述成高斯体,对点云进行优化(点云模型)
    • 高质量、非结构化的离散表示——高斯体:均值控制位置,协方差控制高斯体形状(缩放+旋转)
    • 针对3D高斯特性的优化方法,并同时进行自适应密度控制
  • Splatting的渲染方式,区别于体渲染
    • 实现了使用GPU进行快速可微的渲染,允许各向异性的抛雪球(Splatting)和快速反向传播
Read more »